Ch 21 – Electron Transfer Reactions

	Selected NChO Problems
1998-40.	(A) +0.54 V
	$E^{\circ}(cell) = E^{\circ}_{red}(reduction) - E^{\circ}_{red}(oxidation)$
	0.79 = 1.33 - x
	x = 1.33 - 0.79 = +0.54 volts
1998-41.	(C) $O_2(g)$
	anode = oxidation (lose electrons "LeO") (+ electrode removes electrons from chemicals)
	NO_3 and H_2O are at the + electrode
1000.42	NO ₃ is already oxidized. O in H ₂ O is oxidized. $2H_2O + 4e \rightarrow O_2 + 4H^2$
1998-42.	$(\mathbf{D}) \mathbf{Cu}^{T}$
	best reducing agent = most easily oxidized = smallest \mathbf{E}° value
	look at product in equation with the smaller \mathbf{E}^{-} value
1009 42	$Cu^{-1} + e \rightarrow Cu^{-1}$
1998-43.	(C) decrease the concentration of Zn (aq) ions
	anything that drives this reaction forward will increase the cent's voltage Le Chatener's add more $\mathbf{Zn}(s)$ [adding a solid will not shift the equilibrium]
	add more Clions [this will increase the reverse reaction]
	decrease Zn^{2+} ions [this is the answer]
	decrease pressure of $Cb(g)$ [this will increase the reverse reaction]
1997-43.	(B) reducing agent
	if H_2O_2 is getting reduced it is an oxidizing agent
	if H_2O_2 is getting oxidized , it is a reducing agent
	$H_2O_2 \rightarrow O_2$ is oxidation ; O's oxidation number changes from 1- to 0
	a catalyst would have been written over the arrow.
	I don't know how you would recognize an inhibitor .
1007.44	catalyst and inhibitor are "distractors"wrong answers
1997-44.	(D) 4.4 L Know that electrolysis of water is $2H O(1) \oplus 2H (r) + O(r)$
	Know that electrolysis of water is $2H_2O(1) \otimes 2H_2(g) + O_2(g)$
1997-45	If you make 2.2 L of O_2 , you make twice as much $\Pi_2(g)$
1777-43.	(C) increasing the concentration of Co ⁻ (aq)
	be careful of convoluted wording "less negative = more positive"
	anything that drives this reaction forward will increase the E ^o of the half-reaction.
1006.40	increasing or decreasing the solid Co will have no effect
1996-43.	$(\mathbf{D}) \ 2 \ \mathbf{Ag}^{+} + \mathbf{Pb} \ \mathbf{B} \ 2 \ \mathbf{Ag} + \mathbf{Pb}^{+}$
	when the E° values are written in decreasing order (most + to most -) the
	upper-left & lower-right rule applies Ag' reacts with Pb° and V°, etc. Dl^{2+}
1006 44	Pb ⁻ reacts with V ^o but not Ag ^o
1990-44.	(a) $Ca(OCI)_2$ You need to look at the half reaction forming $Ch(\alpha)$
	The reaction with the least number of moles of e^{-is} is the answer
	Ca(OCl) ₂ Cl has oxidation # of +1 in OCl $2 \text{ OCl} + 2e^- \rightarrow Ch + 2 \text{ O}^{2-}$
	NaClO ₂ Cl has oxidation # of +1 in ClO ₂ $2 \text{ ClO}_2 + 2 \text{ Cl} + 4 \text{ O}^2$
	KClO ₂ Cl has oxidation # of +5 in ClO ₂ $2 \text{ ClO}_2 + 10^{\text{cl}} \rightarrow \text{Ch} + 6 \text{ O}^{2^{\text{cl}}}$
	$Mg(C O_4)_2 \qquad Cl has oxidation \# of +7 in C O_4^- \qquad 2 C O_4^- + 14e^- \rightarrow Ch + 8 O^{2-}$
1994-46.	(C) two
	The chart is in order of decreasing reduction potentials (E° values) so the upper-left lower-right
	rule applies. Ag ⁺ reacts with N ^{p} . Sn ²⁺ reacts with N ^{p}

1994-48.	(D) Ti ⁴⁺
	You need to visualize the half-reactions for each metal.
	The reaction with the most electrons involved will require the greatest length of time.
	$Ag^+ + e^- \rightarrow Ag^\circ$ $Cu^{2+} + 2e^- \rightarrow Cu^\circ$ $Fe^{3+} + 3e^- \rightarrow Fe^\circ$ $Ti^{4+} + 4e^- \rightarrow Ti^\circ$
1993-67.	(C) 20
	This is a line equation. Remember to begin with "amps x time"
	$10 \text{ amps} \times 109 \text{ min} \times \frac{60 \text{ sec}}{100000000000000000000000000000000000$
	1 min $1 \text{ amp} \bullet \text{sec}$ 96,500 C 2 mole e 1 mole Co
1993-66.	(B) 1.55 V
	$E^{\circ}(cell) = E^{\circ}_{red}(reduction) - E^{\circ}_{red}(oxidation)$
	= -0.13 volts $-(-1.68$ volts) $= +1.55$ volts
	Note: The overall reaction is $3Pb^{2+} + 2Al \rightarrow 3Pb + 2Al^{3+}$ (6 moles of electrons are involved)
	but the coefficients of 2 and 3 are not used for this calculation not like Hess's Law.
1992-59.	(A) 0.255 g
	This is a line equation. Remember to begin with "amps x time"
	$2 \text{ summer } 10 \text{ min} \ge 60 \text{ sec} \ge 1 \text{ Couloumb} \ge 1 \text{ mole } \text{e}^{-} \ge 1 \text{ mole } \text{Ag} \ge 107.9 \text{ g Ag} = 0.2540 \text{ g Ag}$
	$2 \operatorname{amps} \times 1.9 \operatorname{min} \times \frac{1}{1 \operatorname{min}} \times \frac{1}{1 \operatorname{amp} \bullet \sec} \times \frac{96,500 \operatorname{C}}{96,500 \operatorname{C}} \times \frac{1}{1 \operatorname{mole} \operatorname{Ag}} = 0.2349 \operatorname{g} \operatorname{Ag}$
1992-60.	(C) 0.492 V
	IF this were a STANDARD cell (everything 1 M) the equation would be:
	$E^{\circ}(cell) = E^{\circ}_{red}(reduction) - E^{\circ}_{red}(oxidation)$
	-0.250 volts - (763 volts) = +0.513 volts (answer D)
	However
	The shortcut cell notation (anode cathode) shows that the $[Zn^{2+}]$ is only 0.5 <u>M</u> .
	The overall reaction is: $Zn^{2+} + Ni^{\circ} \rightarrow Zn^{\circ} + Ni^{2+}$
	Since $[Zn^{2+}]$ is reduced, the cell will run at a little lower voltage best answer is 0.492 volts.
	You can also calculate this answer using the Nernst equation.