Period	_ Date	_//

Nama

21 • Electrochemistry

1998

40. For this reaction, $E^{\circ}_{cell} = 0.79 \text{ V}.$ $6I^{-}(aq) + Cr_2O_7^{2-}(aq) + 14H^+$ $\rightarrow 3I_2(aq) + 2Cr^{3+}(aq) + 7H_2O(aq)$ Given that the standard reduction potential for $Cr_2O_7^{2-}(aq) \rightarrow 2Cr^{3+}(aq)$ is 1.33 V, what is E°_{red} for $I_2(aq)$? a) +0.54 V b) -0.54 V c) +0.18 V d) -0.18 V

41. What is the product formed at the anode in the electrolysis of 1.0 M NaNO₃(aq)?

a) $H_2(g)$	b)	$NO_2(g)$
c) $O_2(g)$	d)	Na(s)

42. Which of these ions is the best reducing agent?

	Standard Reduction Potentials, E°			
	$Fe^{3+}(aq) + e^-$	\rightarrow Fe ²⁺ (aq)	+0.77 V
	$\operatorname{Cu}^{2+}(\operatorname{aq}) + e^{-}$	$\rightarrow Cu^{+}($	aq)	+0.15 V
a)	Fe ³⁺	b)	Fe	2+
c)	Cu^{2+}	d)	Cu	l ⁺

43. $Zn(s) + Cl_2(g, 1 \text{ atm})$

 $\rightleftharpoons Zn^{2+}(aq, 1 \text{ M}) + 2Cl^{-}(aq, 1 \text{ M})$ An electrochemical cell based on this reaction has a cell voltage, E°, of 2.12 V. Which change could make the cell voltage greater than 2.12 V?

- a) add more Zn(s)
- b) add more Cl⁻(aq) ions
- c) decrease the concentration of $Zn^{2+}(aq)$ ions
- d) decrease the partial pressure of Cl₂

NChO Practice Problems

1997

- 43. What is the function of H_2O_2 in this reaction?
 - $\begin{array}{ll} 6H^{+}+2MnO_{4}^{-}+5H_{2}O_{2}\rightarrow2Mn^{2+}+5O_{2}+8H_{2}O\\ a) \mbox{ catalyst } b) \mbox{ reducing agent } \end{array}$
 - c) oxidizing agent d) inhibitor
- 44. How much hydrogen is produced from the electrolysis of water in the same time that 2.2 L of oxygen is formed?a) 0.14 Lb) 1.1 L

a) 0.14 L	0)	1.1 L
c) 2.2 L	d)	4.4 L

45. Which of these changes will cause the value of the potential for this half-reaction to be less negative? ($E^{\circ} = -0.28$ V for the reaction.)

$$\operatorname{Co}^{2+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \to \operatorname{Co}(\operatorname{s})$$

- a) increasing the amount of solid Co
- b) decreasing the amount of solid Co
- c) increasing the concentration of $Co^{2+}(aq)$
- d) decreasing the concentration of $\text{Co}^{2+}(\text{aq})$

1996

a)

 Use these reduction potentials to determine which one of the reactions below is spontaneous.

Reaction	Reduction Potentials, E°
$Ag^+ + e^- \rightarrow Ag$	0.800 V
$Pb^{2+} + 2e^- \rightarrow Pb$	- 0.126 V
$V^{2_+} + 2e^- \rightarrow V$	- 1.18 V
$\sqrt{2^{2^+}+2}$ Ag \rightarrow V +	$2 \text{ A}\sigma^+$

- b) $V^{2+} + Pb \rightarrow V + Pb^{2+}$
- c) $2 \operatorname{Ag}^{+} + \operatorname{Pb}^{2+} \rightarrow 2 \operatorname{Ag} + \operatorname{Pb}$
- d) $2 \operatorname{Ag}^{+} + \operatorname{Pb} \rightarrow 2 \operatorname{Ag} + \operatorname{Pb}^{2+}$

44. It is possible to produce chlorine gas by electrolyzing any of these chlorine-containing compounds under the proper conditions. Which compound will require the smallest number of coulombs to produce one mole of chlorine?

a) Ca(OCl) ₂	b) NaClO ₂
c) KClO ₃	d) $Mg(ClO_4)_2$

1994

If solid nickel metal were added to separate 46. aqueous solutions each containing 1M concentrations of Ag⁺, Cd²⁺, and Sn²⁺ ions, how many metals would plate out, based on the given standard reaction potentials?

Standard Reduction Potentials

Ag ⁺ /Ag	0.799 V
Sn ²⁺ /Sn	-0.141 V
Ni ²⁺ /Ni	-0.236 V
Cd ²⁺ /Cd	-0.400 V
a) zero	b) one
c) two	d) three

Solutions of Ag^+ , Cu^{2+} , Fe^{3+} and Ti^{4+} are 48. electrolyzed with a constant current until 0.10 mol of metal is deposited. Which will require the greatest length of time?

a) Ag ⁺	b)	Cu^{2+}
c) Fe ³⁺	d)	Ti^{4+}

1993

How many grams of cobalt metal will be 67. deposited when a solution of cobalt(II) chloride is electrolyzed with a current of 10. amperes for 109 minutes?

a) 0.66	b)	4.0
c) 20	d)	40

66. What voltage will be produced by the electrochemical cell?

Reduction Potentials		
$Pb^{2+} + 2e^{-}$	$\rightarrow Pb$	-0.13 V
$Al^{3+} + 3e^{-}$	\rightarrow Al	-1.68 V
a) 2.97V	b)	1.55V
c) -1.81V	d)	-2.97V

1992

A spoon is made the cathode in an 59. electroplating apparatus containing a AgNO₃ solution. How many grams of Ag will be plated on the spoon if a current of 2.00 A is passed through the apparatus for 1.90 min.? a) 0.255 g b) 0.150 g d) 0.0638 g c) 0.128 g

60. A cell is set up using the following reactions:

$Zn Zn^{2+} (0.5M)$	$ \operatorname{Ni}^{2+}$	(0.1 M) Ni
$Ni^{2+} + 2e^- \rightarrow N$	Ji E°	= -0.250 V
$\operatorname{Zn}^{2+} + 2e^{-} \rightarrow Z$	Zn E°	= -0.763 V
What is the voltage	of the	cell?
a) -0.513 V	b)	-1.013 V
c) 0.492 V	d)	0.513 V

Answers:

1998	40 a, 41 c, 42 d, 43 c
1997	43 b, 44 d, 45 c
1996	43 d, 44 a
1994	46 c, 48 d
1993	67 c, 66 b
1992	59 a, 60 c