Name ____ Period ____ Date ___/___/

Station 1 – NAMING COMPOUNDS FROM FORMULAS

3 • Molecules and Compounds

Formula	Name
BF_3	boron trifluoride (nonmetal compound)
SF_6	sulfur hexafluoride (nonmetal compound)
$(NH_4)_2Cr_2O_7$	ammonium dichromate (ionic compound)
PbCO ₃	lead carbonate (ionic compound)
NI ₃	nitrogen triiodide (nonmetal compound)

Name the following compounds

South Pasadena • AP Chemistry

3 • Molecules and Compounds

Station 2 – WRITING FORMULAS FROM NAMES

Write the formulas for the following compounds:

Name	Formula
Dinitrogen pentoxide	N ₂ O ₅
ionic Aluminum oxide $Al^{3+} O^{2-}$	Al ₂ O ₃
ionic Stannic sulfate Sn ⁴⁺ SO ₄ ²⁻	Sn(SO ₄) ₂
Oxygen difluoride	OF ₂
Carbon tetrachloride	CCl ₄

Station 3 – MINI MEGA-ION QUIZ

Fill in the symbol and charge for each of the following ions:

ferric	Fe ³⁺	sulfite	SO ₃ ²⁻	hydronium	H_3O^+
permanganate	MnO ₄	silver	Ag^+	hydroxide	OH [.]
sulfide	S ²⁻	thiosulfate	$S_2O_3^{2-}$	cupric	Cu ²⁺
phosphate	PO ₄ ³⁻	hypoiodite	<u>IO</u> .	mercurous	Hg_2^{2+}
calcium	Ca ²⁺	nickel	Ni ²⁺	cyanide	CN

South Pasadena • AP Chemistry

3 • Molecules and Compounds

Station 4 – MYSTERY IONS

Use your knowledge of ions and a little logic to answer the following questions:

Sodium arsenide has the formula: Na₃As. What is the formula for magnesium arsenide? Mg_3As_2 . Na⁺ \therefore As³⁻ Mg^{2+} As³⁻ Gold sulfide has the formula: Au₂S₃. What is the formula for gold chloride? $AuCl_3$. S²⁻ \therefore Au³⁺ Au^{3+} Cl⁻ Calcium oxalate has the formula: CaC₂O₄. What is the formula for aluminum oxalate? $Al_2(C_2O_4)_3$. Ca²⁺ \therefore C₂O₄²⁻ Al^{3+} C₂O₄²⁻

Station 5 – % COMPOSITION

Use your periodic table and calculator to determine the % composition (by mass) of each element in: Note: Give your answers to 1 decimal place.

Formula	%Ca	%C	%N
Ca(CN) ₂	$\frac{40.08}{92.12} \ge 100 = 43.5\%$	$\frac{24.02}{92.12}$ x 100 = 26.1%	$\frac{28.02}{92.12} \ge 100 = 30.4\%$

Calculation Area:

Ca	40.08 g
C ₂	24.02 g
N_2	<u>28.02 g</u>
	92.12 g

South Pasadena • AP Chemistry

3 • Molecules and Compounds

Station 6 – EMPIRICAL FORMULA FROM % COMPOSITION

Determine the empirical formula of the compound from the following %composition (by mass) information:

A compound composed of carbon and hydrogen is found to contain 85.6% C and 14.4% hydrogen by mass.

What is the empirical formula of the compound? ____CH2____

Calculation Area: Assume 100 g of compound. 85.6 g C x $\frac{1 \text{ mole C}}{12.01 \text{ g C}} = 7.13 \text{ mol C}$ $\frac{7.13}{7.13} = 1 \text{ C}$ 14.4 g H x $\frac{1 \text{ mole H}}{1.01 \text{ g H}} = 14.26 \text{ mol H}$ $\frac{14.26}{7.13} = 2 \text{ H}$

Station 7 – MOLE PROBLEMS

Solve the following problems. Show your work using dimensional analysis:

A 2.00 Liter bottle is filled with XeF_4 gas. What is the mass of the gas sample? [MM $XeF_4 = 207.30$ g/mol]

2.00 L x $\frac{1 \text{ mole XeF}_4}{22.4 \text{ L}}$ x $\frac{207.30 \text{ g}}{1 \text{ mole XeF}_4}$ = 18.5 g XeF₄

How many molecules of CO₂ make up a 5.25 g chunk of dry ice? [MM $CO_2 = 44.01$ g/mol]

5.25 g CO₂ x $\frac{1 \text{ mole CO}_2}{44.01 \text{ g CO}_2}$ x $\frac{6.023 \text{ x } 10^{23} \text{ molecules}}{1 \text{ mole CO}_2}$ = 7.18 x 10²² molecules CO₂

South Pasadena • AP Chemistry

3 • Molecules and Compounds

- - -

Station 8 – IDENTIFY MYSTERY SUBSTANCE

When asked to identify a mystery compound, it is often useful to determine the <u>molar mass</u> of the substance. Use the following information to identify the mystery substance:

A 1.25 Liter sample of a diatomic gas, measured at STP, has a mass of 3.96 grams. What is the identity of the gas? _____

x 3.96 g	x = 70.96 g/mol	\mathbf{Cl}_2
$22.4 L^{-1.25 L}$	x = 70.90 g/mol	CI_2

Station 9 – HYDRATE LAB

A student is assigned the task of determining the number of moles of water in one mole of $MgCl_2 \cdot n H_2O$. The student collects the data shown in the following table.

Mass of empty container	22.347 g
Initial mass of sample and container	25.825 g
Mass of sample and container after first heating	23.982 g
Mass of sample and container after second heating	23.976 g
Mass of sample and container after third heating	23.977 g

Determine the *moles of water lost* when the sample was heated.

25.825 g - 23.977 g = 1.848 g H₂O
1.848 g x
$$\frac{1 \text{ mole H}_2\text{O}}{18.02 \text{ g}}$$
 = 0.1026 mole H₂O

Determine the *formula* of the hydrated compound.

23.977 g - 22.347 g = 1.630 g MgCl₂ 1.630 g MgCl₂ x $\frac{1 \text{ mole MgCl}_2}{95.20 \text{ g}}$ = 0.01712 mol MgCl2

Mole Ratio: MgCl₂: H₂O

 $\frac{0.01712}{0.01712} : \frac{0.1026}{0.01712} = 1:5.99$

 $MgCl_2 \cdot 6 H_2O$